
Download free eBooks at bookboon.com

Applications of Prolog

17

Enigma 1225: Rows are Columns

Chapter 1

Enigma 1225: Rows are Columns1

1.1 A Puzzle

A regular feature in the New Scientist magazine is Enigma, a weekly puzzle entry which readers are invited to
solve. In the 8 February 2003 issue [1] the following puzzle was published.

First, draw a chessboard. Now number the horizontal rows 1, 2, ..., 8, from top to bottom and
number the vertical columns 1, 2, ..., 8, from left to right.You have to put a whole number in each of
the sixty-four squares, subject to the following:

1. No two rows are exactly the same.

2. Each row is equal to one of the columns, but not to the column with the same number as the
row.

3. If N is the largest number you write on the chessboard then you must also write 1, 2, ..., N − 1
on the chessboard.

The sum of the sixty-four numbers you write on the chessboard is called your total. What is the
largest total you can obtain?

We are going to solve this puzzle here using Prolog. The solution to be described will illustrate two techniques:
unification and generate-and-test.

Unification is a built-in pattern matching mechanism in Prolog which has been used in [9]; for example, the
difference list technique essentially depended on it. For our approach here, unification will again be crucial in
that the proposed method of solution hinges on the availability of built-in unification. It will be used as a kind
of concise symbolic pattern generating facility without which the current approach wouldn’t be viable.

Generate-and-test is easily implemented in Prolog. Prolog’s backtracking mechanism is used to generate can-
didate solutions to the problem which then are tested to see whether certain of the problem-specific constraints
are satisfied.

1.2 First Thoughts

Fig. 1.1 shows a board arrangement with all required constraints satisfied. It is seen that the first requirement

1This chapter is based on [7]. The author thankfully acknowledges the permission by Elsevier to republish the material here.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

18

Enigma 1225: Rows are Columns

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

3 1 3 6 6 6 6 6

3 3 1 6 6 6 6 6

1 3 3 6 6 6 6 6

6 6 6 4 5 2 5 4

6 6 6 4 4 5 2 5

6 6 6 5 4 4 5 2

6 6 6 2 5 4 4 5

6 6 6 5 2 5 4 4

Figure 1.1: A Feasible Solution

is satisfied since the rows are all distinct. The second condition is also seen to hold whereby rows and columns
are interrelated in the following fashion:

Column 1 2 3 4 5 6 7 8
Row 2 3 1 5 6 7 8 4

We use the permutation

π =

(
1 2 3 4 5 6 7 8
2 3 1 5 6 7 8 4

)
(1.1)

to denote the corresponding column–to–row transformation. The board also satisfies the latter part of the second
condition since no row is mapped to a column in the same position. In terms of permutations, this requirement
implies that no entry remains fixed; these are those permutations which in our context are permissible. 2 The
third condition is obviously also satisfied with N = 6. The board’s total is 301, not the maximum, which, as
we shall see later, is 544.

1.3 Symbolic Solutions

The solution scheme described below in i–v is based on first generating all feasible solutions (an example of
which was seen in Sect. 1.2) and then choosing a one with the maximum total.

i. Take an admissible permutation, such as π in (1.1).

ii. Find an 8 × 8 matrix with symbolic entries whose rows and columns are interrelated by the permutation

2Such permutations are called derangements ([3], p. 73).

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

19

Enigma 1225: Rows are Columns

in i. As an example, let us consider for the permutation π two such matrices, M1 and M2, with

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X3 X1 X3 X6 X6 X6 X6 X6

X3 X3 X1 X6 X6 X6 X6 X6

X1 X3 X3 X6 X6 X6 X6 X6

X6 X6 X6 X4 X5 X2 X5 X4

X6 X6 X6 X4 X4 X5 X2 X5

X6 X6 X6 X5 X4 X4 X5 X2

X6 X6 X6 X2 X5 X4 X4 X5

X6 X6 X6 X5 X2 X5 X4 X4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y3 Y1 Y3 Y1 Y1 Y1 Y1 Y1

Y3 Y3 Y1 Y1 Y1 Y1 Y1 Y1

Y1 Y3 Y3 Y1 Y1 Y1 Y1 Y1

Y1 Y1 Y1 Y4 Y5 Y2 Y5 Y4

Y1 Y1 Y1 Y4 Y4 Y5 Y2 Y5

Y1 Y1 Y1 Y5 Y4 Y4 Y5 Y2

Y1 Y1 Y1 Y2 Y5 Y4 Y4 Y5

Y1 Y1 Y1 Y5 Y2 Y5 Y4 Y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M1 and M2 both satisfy conditions 1 and 2. We also observe that the pattern of M2 may be obtained
from that of M1 by specialization (by matching the variables X1 and X6). Thus, any total achievable for
M2 is also achievable for M1. For any given permissible permutation, we can therefore concentrate on
the most general pattern of variables, M. (We term a pattern of variables most general if it cannot be
obtained by specialization from a more general one.) All this is reminiscent of ‘unification’ and the ‘most
general unifier’, and we will indeed be using Prolog’s unification mechanism in this step.

iii. Verify condition 1 for the symbolic matrix M. 3 Once this test is passed, we are sure that also the latter
part of condition 2 is satisfied. 4

iv. We now evaluate the pattern M. If N symbols have been used in M, assign the values 1, ..., N to them

3This test is necessary since at this stage a matrix may have been generated failing to satisfy condition 1 as is illustrated by the
(admissible) permutation

ρ =

„
1 2 3 4 5 6 7 8
2 3 1 5 4 7 8 6

«
(1.2)

and the corresponding most general matrix M3:

M3 =

2
6666666664

Z4 Z1 Z4 Z9 Z9 Z5 Z6 Z7

Z4 Z4 Z1 Z9 Z9 Z7 Z5 Z6

Z1 Z4 Z4 Z9 Z9 Z6 Z7 Z5

Z9 Z9 Z9 Z3 Z3 Z10 Z10 Z10

Z9 Z9 Z9 Z3 Z3 Z10 Z10 Z10

Z7 Z6 Z5 Z10 Z10 Z8 Z2 Z8

Z5 Z7 Z6 Z10 Z10 Z8 Z8 Z2

Z6 Z5 Z7 Z10 Z10 Z2 Z8 Z8

3
7777777775

4Were it not so, there would exist a row and a column with the same index such that the two were identical. However, this row
will be identical (by way of the admissible permutation) to some other column too. Hence two columns and therefore also two rows
would be identical, thus failing the test.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

20

Enigma 1225: Rows are Columns

in reverse order by first assigning N to the most frequently occurring symbol, N − 1 to the second most
frequently occurring symbol etc. The total thus achieved will be a maximum for the given pattern M.

v. The problem is finally solved by generating and evaluating all patterns according to i–iv and selecting a
one with the maximum total.

1.4 Implementation Details

1.4.1 Design Decisions

The original formulation from the New Scientist uses a chessboard but the problem can be equally set with
a square board of any size. In our implementation, we shall allow for any board size since this will allow the
limitations of the method employed to be explored.

We write matrices in Prolog as lists of their rows which themselves are lists. Permutations will be represented
by the list of the bottom entries of their two-line representation; thus, [2, 3, 1, 5, 6, 7, 8, 4] stands for
π in (1.1).

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Applications of Prolog

21

Enigma 1225: Rows are Columns

1.4.2 Admissible Permutations

First, we want to generate all permutations of a list. Let us assume that we want to do this by the predicate
permute(+List,-Perm) and let us see how List = [1, 2, 3, 4] might be permuted. A permuted list, Perm
= [3, 4, 1, 2] say, may be obtained by

• Removing from List the entry E = 3 , leaving the reduced list
R = [1, 2, 4]

• Permuting the reduced list R to get P = [4, 1, 2]

• Assembling the permuted list as [E|P] = [3, 4, 1, 2] .

Lists with a single entry are left unchanged. This gives rise to the definition

permute([X],[X]).

permute(L,[E|P]) :- remove_one(L,E,R), permute(R,P).

with the predicate remove one(+List,?Entry,?Reduced) defined by

remove_one([H|T],H,T).

remove_one([H|T],E,[H|L]) :- remove_one(T,E,L).

(Here we remove either the head or an entry from the tail.) For a permutation to be admissible, all entries must
have changed position. We implement this by

admissible(L,P) :- permute(L,P), all_changed(L,P).

all_changed([X],[Y]) :- X ¯ Y.

all_changed([H1|T1],[H2|T2]) :- H1 ¯ H2, all_changed(T1,T2).

Exercise 1.1. Provide an alternative definition of remove one/3 by using one clause and append/3 . �

1.4.3 Generating Symbolic Matrices

To generate a list of N unbound variables, L , we use var list(+N,-L) which is defined in terms of length(-L,+N)
by

var_list(N,L) :- length(L,N).

(See [9, p. 110, footnote 15].) Matrices with distinct symbolic entries may now be produced by mapping; for
example, a 3 × 2 matrix is obtained by

?- maplist(var list,[2,2,2],M).

M = [[_G370, _G373], [_G379, _G382], [_G388, _G391]]

Exercise 1.2. Use the above idea to define var matrix(+Size,-M) for generating a square symbolic matrix
of any size. �

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

22

Enigma 1225: Rows are Columns

1.4.4 Permuting Rows

This is accomplished by list permute(+Perm,+L,-P) as indicated below.

?- var matrix(3, M), list permute([3,1,2], M, P),

write matrix(M), nl, write matrix(P).

[_G779, _G782, _G785]

[_G791, _G794, _G797]

[_G803, _G806, _G809]

[_G803, _G806, _G809]

[_G779, _G782, _G785]

[_G791, _G794, _G797]

(The permutation Perm establishes a correspondence between the entries of P and those of L .)

Exercise 1.3. Define the predicate list permute/3 by recursion, using nth1/3 from [9, p. 107]. �

1.4.5 Transposing

This will be accomplished by transpose(+M,-T) .

?- maplist(var list,[2,2,2], M), transpose(M, T),

write_matrix(M), nl, write matrix(T).

[_G779, _G782]

[_G788, _G791]

[_G797, _G800]

[_G779, _G788, _G797]

[_G782, _G791, _G800]

Exercise 1.4. Use maplist/3 to define transpose/2 . Allow for any not necessarily square matrix as
indicated above.

Hint. First define a predicate col(+Matrix,+N,-Column) for returning the N th column of a matrix. �

1.4.6 Most General Patterned Symbolic Matrices

It is now that Prolog shows its true strength: we use unification to generate symbolic square matrices with
certain patterns.5 For example, we may produce a 3 × 3 symmetric matrix thus

?- var matrix(3, M), transpose(M, M), write matrix(M).

[_G535, _G538, _G541]

[_G538, _G550, _G553]

[_G541, _G553, _G565]

5Trying to produce the results in this section by a programming language without built-in unification will be a much more
involved exercise.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

23

Enigma 1225: Rows are Columns

More importantly, we are now in a position to produce symbolic matrices with prescribed patterns. For
example, below we generate the most general 3 × 3 matrix whose rows and columns are interrelated by the
permutation (

1 2 3
3 1 2

)
?- var matrix(3, M), list permute([3,1,2], M, P),

transpose(P, M), write_matrix(M).

[_G748, _G748, _G754]

[_G754, _G748, _G748]

[_G748, _G754, _G748]

Unification is again seen to play a crucial rôle here as M is declared to be the transpose of P :

• transpose/2 receives in its first argument the Prolog term for P .

• The term for the transpose of P is returned in the second argument of transpose/2 .

• This then is unified with the term for M thereby producing the intended pattern.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Applications of Prolog

24

Enigma 1225: Rows are Columns

1.4.7 Distinct Rows

We want to test whether all rows of a matrix with symbolic entries are distinct. Matrices are lists, we therefore
need to test for distinctness of list entries which are Prolog terms. The matrix [[A, B], [C, D]] should pass
the test, whereas [[A, B], [A, B]] should not. The negation of the unification operator (\=/2) cannot tell
apart the rows of the first matrix; we need here a ‘stronger’ (i. e. more specialized) notion of equality as
defined by the term equivalence operator ==/2 and its negation, \==/2 . (See inset overleaf.) Thus, using \==/2
will allow the rows of the former matrix to be recognized as different, whereas those of the latter are verified
identical.

?- [A, B] \== [C, D].

A = _G240

B = _G243

C = _G246

D = _G249

Yes

?- [A, B] \== [A, B].

No

Built-in Predicates: ==/2 and \==/2

These two predicates are used to test for term ’equivalence’ and its negation,
respectively. Two terms are equivalent if there exists a term to which both
of them have been bound prior to the invocation of ==/2 . For example, the
query

?- X = u, g(X,V) = Y, f(h(g(u,V)),Y) == f(h(Y),g(X,V)).

X = u

V = G448

Y = g(u, G448)

Yes

succeeds since both sides have been bound (by prior unification) to the term
f(h(g(u,V)),g(u,V)) . However, the query

?- f(h(g(u,V)),Y) == f(h(Y),g(X,V)).

No

fails even though the two terms are unifiable:

?- f(h(g(u,V)),Y) = f(h(Y),g(X,V)).

V = G325

Y = g(u, G325)

X = u

Yes

Exercise 1.5. Use \==/2 to define a predicate distinct/1 for testing the distinctness of entries of a list
as discussed above. �

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

25

Enigma 1225: Rows are Columns

1.4.8 Evaluating Patterns

Given a patterned symbolic matrix, we want to sort the list of its entries according to their frequencies of
occurrence and assign the rank order to each. For example, in the matrix M from the second query in Sect. 1.4.6,
p. 22, the entry G748 occurs six times while G754 occurs thrice. Therefore, as shown below, G754 and G748
will be assigned the values 1 and 2 respectively.

?- var matrix(3, M), list permute([3,1,2], M, P),

transpose(P, M), eval matrix(M,Freq), write matrix(M).

[2, 2, 1]

[1, 2, 2]

[2, 1, 2]

Freq = [(3, 1), (6, 2)]

This shall be accomplished by the predicate eval matrix(?M,-Freq) ; it expects a symbolic matrix M in its first
argument which then is unified with an integer matrix whose each entry will be the rank order of the frequency
of the corresponding symbolic entry. The second argument Freq is unified with the list of frequencies for each
number in the matrix as indicated above.

The hand computations in Fig. 1.2 on p. 27 indicate the steps involved in implementing eval matrix/2 .

1© Produce the list of matrix entries by flatten(+Matrix,-Entries) .

2© Discard multiple occurrences by setof(E,member(E,+Entries),-Set) .

3© Use maplist(count var(+Entries),+Set,-Multiplicities) to count how many times each variable
occurs in the matrix.

Exercise 1.6. Define the predicate count var(+VarList,+Var,-Num) . It will behave as follows.

?- count var([A, B, A, C, B, A], B,N).

N = 2

�

4© Use zip(+Multiplicities,+Set,-Frequencies) to obtain the list of matrix entry frequencies by zipping
the lists produced in 2© and 3©.

Exercise 1.7. Define the predicate zip/3 . It should behave as follows.

?- zip([1,2,3],[a,b,c],L).

L = [(1, a), (2, b), (3, c)]

�

5© Use sort(+Frequencies,-FreqSorted) (Prolog’s built-in sort/2) to sort the pairs from 4©. Tuples with
less frequent matrix entries will precede those with more frequent ones.

6© Use maplist(snd,+FreqSorted,-VarsSorted) to retain the tuples’ second entries only. We get a com-
plete list of matrix entries, with no multiple copies, featuring in the rank order of their frequencies. snd/2
extracts the second entry of a 2–tuple and is defined by

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

26

Enigma 1225: Rows are Columns

snd((_,X),X).

7© Use length(+VarsSorted,-NVars) to count the number of distinct matrix entries.

8© Use from to/3 to generate the list of integers [1, ..., NVars] . (The predicate from to/3 is known
from [9, p. 17].)

9© Unify each variable in VarsSorted with the rank order of its frequency. A single call to
from to(1,+NVars,?VarsSorted) will accomplish both steps, 8© and 9©. The effect of this call will also
be that

• The initial (input) matrix will be bound to the integer matrix of frequency ranks. This will form the
first output of eval matrix/2 .

• FreqSorted will be bound to the list of frequency pairs, forming the second output of eval matrix/2 .

The complete definition of eval matrix/2 , now a mere sequencing of clauses from 1©– 9©, will be found in
the source file enigma.pl.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Applications of Prolog

27

Enigma 1225: Rows are Columns

The predicate eval matrix/2 has been defined in a style reminiscent of that used in functional programming. (The
predicates maplist/3 , zip/3 and snd/2 have indeed direct analogues in Haskell [30].) In [24], Parker espouses the virtues of
this style for Prolog and calls it the ‘stream data analysis paradigm’. Fig. 1.2 corresponds to what is called in [24] a ‘dataflow
diagram’ or ‘Henderson diagram’.

1©
�� ��

��
�

� 2©
��

����������������

�� �

� 3©
��

����������

��

�

�

�

4©
�� ��

5©
��

6©
�� ��

�
�

���������������

7©
��

8©
�� ��

�

�

��

9©
��

,

Figure 1.2: Hand Computations for Pattern Evaluation

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

28

Enigma 1225: Rows are Columns

total([(1,10),(2,100),(3,1000)], Total) ��

total([(1,10),(2,100),(3,1000)], 0, Total) ��

total([(2,100),(3,1000)], 10, Total) ��

total([(3,1000)], 210, Total) �� total([], 3210, Total) ��

Total = 3210 �� success

Figure 1.3: Suggested Hand Computations for total/2

1.4.9 Computing Totals

Exercise 1.8. For the computation of the matrix total we shall need a predicate total(+IntPairs,-Total)
which should sum the product of paired entries as exemplified below.

?- total([(1,10),(2,100),(3,1000)],Total).

Total = 3210

Define total/2 by the accumulator technique along the hand computations shown in Fig. 1.3. �

1.4.10 Complete Implementation

In (P-1.1), we show the definition of square/5 which has been assembled from the predicates in Sects. 1.4.2–
1.4.9.

Prolog Code P-1.1: Definition of square/5

1 square(Size,M,Total,Freq,Perm) :- var_matrix(Size,M),

2 from_to(1,Size,One_to_Size),

3 admissible(One_to_Size,Perm),

4 list_permute(Perm,M,P),

5 transpose(P,M),

6 distinct(M),

7 eval_matrix(M,Freq),

8 total(Freq,Total).

square/5 may be used to search for feasible solutions as shown by the query in Fig. 1.4 for a 4 × 4 board.
We know that all boards with the maximum total will be amongst those generated by the current process.
Therefore, the largest of all totals thus generated will be the maximum total. We use setof/3 to obtain the
sorted list of all totals generated (without duplicates) and select the maximum value by the built-in predicate
last/2 :6

6There is some inconsistency between versions of SWI–Prolog here. Version 3.4.5 is used in the query below, but, the order of
the arguments in last/2 will have to be reversed if using version 5.2.7.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

29

Enigma 1225: Rows are Columns

�

�

�

�

?- square(4, M,Total,Freq,Perm), write matrix(M).

[1, 1, 2, 3]

[1, 1, 3, 2]

[3, 2, 4, 4]

[2, 3, 4, 4]

Total = 40

Freq = [(4, 1), (4, 2), (4, 3), (4, 4)]

Perm = [2, 1, 4, 3] ;

[1, 2, 2, 1]

[1, 1, 2, 2]

[2, 1, 1, 2]

[2, 2, 1, 1]

Total = 24

Freq = [(8, 1), (8, 2)]

Perm = [2, 3, 4, 1] ;

...

Figure 1.4: Generating Feasible Solutions by square/5

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Applications of Prolog

30

Enigma 1225: Rows are Columns

?- setof(Tot, M^ Freq^ Perm^square(8, M, Tot, Freq, Perm),Tots),

last(Max,Tots).

Tots = [160, 244, 288, 301, 400, 544]

Max = 544

We now know that the maximum total is 544 and may find a board with that total (and the corresponding
permutation) by

?- square(8, M,544, ,Perm), write imatrix(M).

[1 1 2 3 4 5 6 7]

[1 1 3 2 5 4 7 6]

[3 2 8 8 9 10 11 12]

[2 3 8 8 10 9 12 11]

[5 4 10 9 13 13 14 15]

[4 5 9 10 13 13 15 14]

[7 6 12 11 15 14 16 16]

[6 7 11 12 14 15 16 16]

Perm = [2, 1, 4, 3, 6, 5, 8, 7]

Exercise 1.9. Define the predicate write imatrix/1 for displaying on the terminal an integer matrix with
non-negative entries, right justified. In your definition, you should use writef(+Format,+Arguments) (Prolog’s
formatted write); see inset. The built-in predicates concat atom/2 [9, p. 126] and int to atom/2 (see inset)
may be used to construct writef ’s first argument. �

Built-in Predicate: writef(+Format,+Arguments)

This is one of Prolog’s predicates for formatted write . Arguments is a list
whose entries are displayed on the terminal according to the atom Format .
Example:

?- writef(’[%8r%8r%8r]’,[12, 345, 6789]).

[12 345 6789]

displays the list [12, 345, 6789] with its entries right justified, each occupying

up to eight digits. Consult the manual [33] for the options available for Format .

Built-in Predicate: int to atom(+Int,-Atom)

Unifies Atom with the ASCII representation of Int . Example:

?- int to atom(1953,A).

A = ’1953’

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

31

Enigma 1225: Rows are Columns

Size 3 4 5 6 7 8 9
CPU Seconds 0.00 0.06 0.11 2.03 15.37 209.59 3,334.14

Table 1.1: CPU times for Various Board Sizes

1.5 Enhanced Implementation

1.5.1 What is Wrong with the Present Implementation?

The implementation obtained in Sect. 1.4.10 has serious limitations. Table 1.1 shows the CPU times needed for
solving the puzzle for up to size 9 on a 300 MHz PC. The size of the original puzzle seems to be the practical
limit of what can be solved by this method.7 Table 1.1 indicates that the computing time increases roughly with
the factorial of Size. This means for the original puzzle that 8! = 40, 320 permutations have to be generated
of which 14, 833 will be admissible.8 Each of these will give rise to a patterned symbolic matrix, each to be
tested by distinct/1 . The number of patterned matrices passing this test is 13, 713.9 All of them are then
evaluated, resulting in a list with 13, 713 entries. After removing duplicates with setof/3 , we end up with a
list of just six values!

There is obviously a great deal of duplication of effort here.
To reduce the number of permutations to be considered, we are going to introduce in the next section

a partitioning of the set of all permutations into subsets, called types, such that permutations of the same
type will share certain pertinent properties. More precisely, each of the following properties will be such that
permutations of the same type either all have it or none has it.10

• Being admissible,

• For admissible permutations, the corresponding most general symbolic pattern having distinct rows.

Furthermore,

• For permutations of the same type, the corresponding most general symbolic pattern will evaluate to the
same maximum total.

7There is another problem for larger sizes which could be overcome, however. For sizes exceeding 9, insufficient memory will be
available for using setof/3 to collect the values of total. To remedy the situation, we could instead calculate the maximum total
in an incremental fashion by using, for instance, assert/1 to save in the database the most recent maximum value of total.

8The number of admissible permutations can be found by the query

?- bagof(A,admissible([1,2,3,4,5,6,7,8], A), As), length(As,L).

L = 14833

Alternatively, the number of admissible permutations of {1, . . . , n}, an, may be calculated by the recurrence relation

an = n!− (f1n + f2n + . . . + f(n−1)n + 1)

where
fin =

“n

i

”
an−i

denotes the number of permutations of {1, . . . , n} which leave exactly i entries fixed. Start with a1 = 0. Other ways of calculating
an may be found in [3, p. 73].

9We find this by the query

?- bagof(Tot, M^ Freq^ Perm^square(8, M, Tot, Freq, Perm), Tots), length(Tots,L).

L = 13713

The matrix M3 in footnote 3, p. 19, is an example for a pattern which will be tested by distinct/1 and fail.
10We may call them therefore type-properties.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

32

Enigma 1225: Rows are Columns

�

��

5

7

2
�

�

��

�

6

3

4

8

1

Figure 1.5: The Cycles τ1 and τ2

It will therefore suffice to concentrate on a representative permutation from each type (Sect. 1.5.3). Before
elaborating on this idea, however, we first review some results from the Theory of Permutations [3].

1.5.2 Some Results from the Theory of Permutations

The Cycle Notation for Permutations

Let us look at the permutation

τ =

(
1 2 3 4 5 6 7 8
6 5 4 8 7 3 2 1

)

It can be thought of as the composition of two cycles τ1 and τ2 with

τ1 =

(
2 5 7
5 7 2

)
, τ2 =

(
1 3 4 6 8
6 4 8 3 1

)

It is seen from Fig. 1.5 that both cycles (as the name implies) effect a cyclical interchange on a subset of
{1, . . . , 8}; these subsets form a partition of {1, . . . , 8} = {2, 5, 7}∪{1, 3, 4, 6, 8}. We may use the cycle notation
to denote cycles: τ1 = (5 7 2), τ2 = (6 3 4 8 1). The permutation τ is said to be the product of the cycles τ1

and τ2,

τ = (5 7 2)(6 3 4 8 1) (1.3)

As the individual cycles of a product operate on disjoint sets, the order in which the cycles are listed is
immaterial, though shorter cycles are usually written before longer ones. Thus τ = (6 3 4 8 1)(5 7 2). The
entries of a cycle in the cycle notation may be rotated [9]; for example, (3 4 8 1 6) still refers to the cycle τ2.

Another example of a permutation in the cycle notation is

ρ = (4 5)(1 2 3)(6 7 8) (1.4)

from (1.2) on p. 19; it is the product of three cycles.

Finally, permissible permutations (so-called derangements) are now easily recognized as those without a
1–cycle.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

33

Enigma 1225: Rows are Columns

Types

The permutation τ in (1.3) is the product of two cycles, τ1 and τ2, of length 3 and 5, respectively. Therefore, τ
is said to be of type [3151].11 π in (1.1) is another permutation of the same type, since

π = (3 1 2)(7 8 4 5 6) (1.5)

On the other hand, ρ in (1.4) is seen to be of type [2132].
We note in passing that each type corresponds to a partition of the number of elements permuted. A

partition of a positive whole number is its representation as the sum of some positive whole numbers. For
example, the above types define the partitions 8 = 3 + 5 and 8 = 2 + 3 + 3.

Types in our context become significant by the following

Observation. Column–to–row transformations of the same type give rise to most general patterned
symbolic matrices which are essentially the same in that they can be transformed into each other
by appropriate row–to–row and column–to–column rearrangements.

We won’t prove this result here but illustrate it by an example. To determine the most general symbolic matrix
for τ from that of π, proceed as follows.

1. Write the permutations π and τ in cycle notation (as in (1.5) and (1.3)) and place them above each other
as shown below.

π = (3
↓

τ = (5

1
↓
7

2)
↓
2)

(7
↓

(6

8
↓
3

4
↓
4

5
↓
8

6)
↓
1)

Shorter cycles should precede longer ones.

2. Read off the rearrangement as (
3 1 2 7 8 4 5 6
5 7 2 6 3 4 8 1

)
or, written in the usual way, as (

1 2 3 4 5 6 7 8
7 2 5 4 8 1 6 3

)
(1.6)

3. Produce the most general patterned symbolic matrix for π by

?- var matrix(8, M), list permute([2,3,1,5,6,7,8,4], M, P),

transpose(P, M), write matrix(M).

[_G868, _G871, _G868, _G877, _G877, _G877, _G877, _G877]

[_G868, _G868, _G871, _G877, _G877, _G877, _G877, _G877]

[_G871, _G868, _G868, _G877, _G877, _G877, _G877, _G877]

[_G877, _G877, _G877, _G958, _G961, _G964, _G961, _G958]

[_G877, _G877, _G877, _G958, _G958, _G961, _G964, _G961]

[_G877, _G877, _G877, _G961, _G958, _G958, _G961, _G964]

[_G877, _G877, _G877, _G964, _G961, _G958, _G958, _G961]

[_G877, _G877, _G877, _G961, _G964, _G961, _G958, _G958]

11In this notation for types (see [3]), the superscripts stand for the number of times cycles of a particular length occur. The
square brackets have nothing to do with Prolog’s list notation.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

34

Enigma 1225: Rows are Columns

Rename the variables as necessary to see that the above is M1 (p. 19).

4. Rearrange the columns of M1 according to (1.6) to get

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X6 X1 X6 X6 X3 X6 X3 X6

X6 X3 X6 X6 X1 X6 X3 X6

X6 X3 X6 X6 X3 X6 X1 X6

X2 X6 X4 X4 X6 X5 X6 X5

X5 X6 X5 X4 X6 X2 X6 X4

X4 X6 X2 X5 X6 X5 X6 X4

X4 X6 X5 X2 X6 X4 X6 X5

X5 X6 X4 X5 X6 X4 X6 X2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5. Now, using (1.6) again, rearrange the rows of the matrix from the previous step.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Applications of Prolog

35

Enigma 1225: Rows are Columns

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X4 X6 X2 X5 X6 X5 X6 X4

X6 X3 X6 X6 X1 X6 X3 X6

X5 X6 X4 X5 X6 X4 X6 X2

X2 X6 X4 X4 X6 X5 X6 X5

X6 X3 X6 X6 X3 X6 X1 X6

X4 X6 X5 X2 X6 X4 X6 X5

X6 X1 X6 X6 X3 X6 X3 X6

X5 X6 X5 X4 X6 X2 X6 X4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is the most general patterned symbolic matrix for τ as is confirmed by the query below.

?- var matrix(8, M), list permute([6,5,4,8,7,3,2,1], M, P),

transpose(P, M), write matrix(M).

[_G868, _G871, _G874, _G877, _G871, _G877, _G871, _G868]

[_G871, _G898, _G871, _G871, _G907, _G871, _G898, _G871]

[_G877, _G871, _G868, _G877, _G871, _G868, _G871, _G874]

[_G874, _G871, _G868, _G868, _G871, _G877, _G871, _G877]

[_G871, _G898, _G871, _G871, _G898, _G871, _G907, _G871]

[_G868, _G871, _G877, _G874, _G871, _G868, _G871, _G877]

[_G871, _G907, _G871, _G871, _G898, _G871, _G898, _G871]

[_G877, _G871, _G877, _G868, _G871, _G874, _G871, _G868]

Row–to–row and column–to–column rearrangements obviously retain the total of a numerical matrix. There-
fore, most general patterned symbolic matrices belonging to permutations of the same type will evaluate to the
same maximum total. This confirms the last of the three results announced in Sect. 1.5.1. The other two
are more straightforward. Admissibility (i.e. not having any 1–cycle) is clearly a type-property. Finally, a
matrix with distinct rows will be transformed to a such by a row–to–row or column–to–column rearrangement.
Therefore, row-distinctness is also a type-property.

1.5.3 Generating Representative Permutations

Generating Permutation Types

The following algorithm, which is from [3, p. 440], is for obtaining all partitions of a number. It will serve as a
basis for generating all permutation types for a given problem size. (As mentioned earlier, there is a one–to–one
correspondence between partitions of a number and permutation types.)

The following rule is the basis for a method of listing all partitions of n in lexicographic order.12

The first partition is [n]. Suppose the current partition λ has parts λ1 � λ2 � . . . � λr. Then the
next partition is found as follows:

(i) if λr �= 1, then the parts of the next partition are λ1, λ2, . . . , λr−1,
λr − 1, 1;

12The following is an appropriate ordering. For two partitions of n, p = [1α12α2 . . . nαn] and r = [1β12β2 . . . nβn], we say that
p comes before r (denoted by p ≺n r) if for some k ∈ {1, . . . , n}, αk > βk and αi = βi for all i ∈ {k + 1, . . . , n}. For example,

[113141] ≺8 [1441] since, more explicitly, [112031 4150607080] ≺8 [142030 4150607080]. (Longest possible identical tail sections
are shaded.) In the ascending chain of successors produced by the algorithm, every partition of n appears since ≺n is a total

ordering on the partitions of n.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

36

Enigma 1225: Rows are Columns

(1) (3) (5)

Current
Partition

© © © © ©
© © © © ©
© © © ©
© © © ©
©× ©×
©×
©×

© © © © ©
© © © © ©
© © © ©
©× ©× ©× ©×
©×
©×
©×
©×

© © © © ©
© © © © ©
© © © ©
© © ©
© © ©
©× ©×

[12214252] [144252] [21324152]

(2) (4) (6)

Next
Partition

© © © © ©
© © © © ©
© © © ©
© © © ©
©×
©×
©×
©×

© © © © ©
© © © © ©
© © © ©
©× ©× ©×
©× ©× ©×
©× ©×

© © © © ©
© © © © ©
© © © ©
© © ©
© © ©
©×
©×

[144252] [21324152] [12324152]

Step
Used

(ii) (ii) (i)

Table 1.2: A Ferrers Diagram

(ii) if λr = λr−1 = · · · = λr−s+1 = 1 but λr−s = x �= 1, then the parts of the next partition are
obtained by replacing λr−s, λr−s+1, . . . , λr by x−1, x−1, x−1, . . . , x−1, y, where 1 � y � x−1
and the number of parts x − 1 is chosen so that the result is a partition of n.

To make the recursive step of this algorithm more accessible, we show in Table 1.2 some typical instances for
generating partitions of n = 22. Ferrers Diagrams ([3]) are used in Table 1.2 to illustrate partitions. Tokens
involved in the recursive step are marked (×).

We paraphrase the algorithm in plain English as it may look rather cryptic at first sight. We lay out n
tokens to represent the current partition as a Ferrers diagram. The initial pattern will be just a single row of n
tokens, denoting the partition [n]. All subsequent diagrams will have several rows and (as a rule) longer rows
are placed above shorter ones. To decide which of the recursive steps (i) or (ii) applies, we inspect the bottom
row. If it contains more than one token, we then remove its last (i.e. rightmost) token and start a new row by
placing it below what was hitherto the bottom row. This completes step (i). On the other hand, if the bottom
row consists of a single token, we then scan the diagram from bottom to top. There are now two possibilities.
We may find that all rows are single-token rows in which case we have found the last partition, [1n], and stop.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

37

Enigma 1225: Rows are Columns

(This has been omitted in the algorithm.) The other possibility is that there is a row containing more than one
token. In this case, we remove from the diagram all single-token rows as well as the bottom non-single-token
row which has x(� 2) tokens, say. (These tokens have been marked in Table 1.2, parts (1) and (3).) The tokens
thus removed are now used to build up as many new rows of length x− 1 as possible; we place them below the
other (undisturbed) tokens. All the remaining tokens, less than x − 1, if any, are placed below all the other
tokens. This completes step (ii).

Partitions will be represented in our Prolog implementation by lists of pairs; for example, [(2,1), (3,2),

(4,1), (5,2)] stands for [21324152].

As a first step towards implementing a type generator , we define next partition(+Current,-Next) which
for a Current partition returns the Next partition; for example,

?- next partition([(2,1), (3,2), (4,1), (5,2)], Next).

Next = [(1, 2), (3, 2), (4, 1), (5, 2)]

In (P-1.2) we define those three clauses of next partition/2 which are typified by the cases in Table 1.2; the
definition of the remaining clauses is asked for in Exercise 1.10.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Applications of Prolog

38

Enigma 1225: Rows are Columns

Current Partition [234162] . . . [4352] . . .

Next Partition . . . [113163] . . . [15233142]

Step Used

Current Partition . . . [135172] . . .

Next Partition [214262] . . . [334251]

Step Used

Table 1.3: Suggested Examples for Exercise 1.10

Prolog Code P-1.2: Three clauses of the predicate next partition/2

1 next_partition([(1,Alpha),(2,1)|T], % Cases (1)-(2) in Table 1.2

2 [(1,NewAlpha)|T]) :- %

3 NewAlpha is Alpha + 2. %

4 next_partition([(1,Alpha1),(L,AlphaL)|T], % Cases (3)-(4) in Table 1.2

5 [(Rest,1), %

6 (NewL,Ratio), %

7 (L,NewAlphaL)|T]) :- %

8 L > 2, %

9 AlphaL > 1, %

10 NewL is L - 1, %

11 Rest is (Alpha1 + L) mod NewL, %

12 Rest > 0, %

13 Ratio is (Alpha1 + L) // NewL, %

14 NewAlphaL is AlphaL - 1. %

15 next_partition([(2,1)|T],[(1,2)|T]). % Cases (5)-(6) in Table 1.2

Exercise 1.10. The complete definition of next partition/2 comprises ten clauses three of which have
been defined already. Typical examples covered by each of the remaining seven clauses are partially shown in
Table 1.3. Complete Table 1.3 and then define the missing clauses of next partition/2 . (It may be helpful
to devise the corresponding Ferrers diagrams by using coins.) �

The predicate next partition/2 returns for a given partition its successor. We want, however, a generator
(also called enumerator) of partitions, i.e. a predicate which on backtracking will eventually return all partitions.
The more general question is as follows: How do we ‘convert’ a successor predicate into a generator? The key
to answering this question is by recognizing that this type of problem has been met before. In Exercise 4.6, [9,
p. 134], the following definition of int(+N,?NextN) was considered,

int(I, I).

int(Last, I) :- succ(Last, New), int(New, I).

This definition can be used as a template for defining another generator: replace succ and int respectively by
next partition and part thus giving,

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

39

Enigma 1225: Rows are Columns

part(P, P).

part(Last, Next) :- next_partition(Last, New), part(New, Next).

This will result in an acceptable solution,

?- part([(1,2),(2,1),(4,2),(5,2)], P).

P = [(1, 2), (2, 1), (4, 2), (5, 2)] ;

P = [(1, 4), (4, 2), (5, 2)] ;

P = [(2, 1), (3, 2), (4, 1), (5, 2)] ;

...

A better idea still is to write a higher order predicate, generator/3 , say, to accomplish the same task for
any successor predicate. We then have, for example,

?- generator(next partition,[(1,2),(2,1),(4,2),(5,2)], P).

P = [(1, 2), (2, 1), (4, 2), (5, 2)] ;

P = [(1, 4), (4, 2), (5, 2)] ;

P = [(2, 1), (3, 2), (4, 1), (5, 2)] ;

...

and

?- generator(succ,7,I).

I = 7 ;

I = 8 ;

I = 9 ;

...

We define generator(+Pred,+Init,?Element) in (P-1.3) by

Prolog Code P-1.3: Definition of generator/3

1 generator(Pred,From,Element) :-

2 retractall(temp(_,_)),

3 assert(temp(First,First)),

4 assert(temp(Last,E) :- (call(Pred,Last,New), temp(New,E))),

5 temp(From,Element).

(P-1.3) shows that

• The temporary generator to be defined in the database is named temp/2 . Possible earlier definitions are
removed first.

• Following our template, two clauses of temp/2 are written to the database. For instance, after running
the above example, the database may be inspected thus

?- listing(temp).

temp(A, A).

temp(A, B) :- call(succ, A, C), temp(C, B).

As the predicate name is open at this stage, call/3 is used to invoke the predicate in Pred . (See inset.)

• Finally, temp/2 , just written to the database, is invoked and backtracking is used to produce the sequence.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

40

Enigma 1225: Rows are Columns

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) . . .

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2)

(3, 0) (3, 1)

(4, 0)

� � �
� �

�

�

� �

� �

�

�

�
�

Figure 1.6: Enumeration Scheme for {(m, n) : m, n = 0, 1, 2, . . .}. (See Exercise 1.12.)

Built-in Predicate: call/n, n = 1, 2, 3, ...

call(+Goal) invokes Goal . Combine call/1 with =../2 , the built in predicate
univ ([9] or [33]), if the arity of the predicate in Goal is known at run time
only. Example:

?- Functor = append, Args = [[1,2],[3],L],

Goal =.. [Functor| Args], call(Goal).

L = [1, 2, 3]

Goal = append([1, 2], [3], [1, 2, 3])

Use call(+Predicate, +Arg1, +Arg2, ...) to invoke a Predicate whose ar-
ity is known at compile time. Examples:

?- Pred = append, call(Pred,[1,2],[3],L).

Pred = append

L = [1, 2, 3]

?- Pred = append([1,2]), call(Pred,[3],L).

Pred = append([1, 2])

L = [1, 2, 3]

call/n is a higher order predicate.

Exercise 1.11. Define a predicate next int(+Upper,+I,-NextI) for unifying NextI with the value of I
incremented by 1. The predicate should fail if Upper does not exceed I . Use next int/3 in conjunction with
generator/3 to generate all integers between 3 and 9. �

Exercise 1.12. Fig. 1.6 indicates an enumeration scheme for all pairs of non-negative integers (the Carte-
sian product). Define next pair/2 for returning the successor of any given pair. Then use next pair/2 in
conjunction with generator/3 for defining an enumerator for the said Cartesian product. �

Exercise 1.13. (An improved generator) The predicate pairs/1 , defined by

pairs((I,J)) :- int(0,Sum), between(0,Sum,I), J is Sum - I.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

41

Enigma 1225: Rows are Columns

enumerates the pairs of non-negative integers as shown in Fig. 1.7.13 It will return on backtracking all pairs
starting from (0, 0).

?- pairs(P).

P = 0, 0 ;

P = 0, 1 ;

P = 1, 0 ;

P = 0, 2 ;

P = 1, 1 ;

...

An alternative implementation of pairs/1 may conceivably be obtained by replacing in its definition the
predicates int/2 and between/3 by their respective definitions using generator/3 :

pairs_alt((I,J)) :- generator(succ,0,Sum),

generator(next_int(Sum),0,I),

J is Sum - I.

Testing will reveal, however, that this implementation is flawed. The problem is due to the use by
generator/3 of the same name temp for predicates written to the database.

13The built-in predicate between/3 is described in [9, p. 41].

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Applications of Prolog

42

Enigma 1225: Rows are Columns

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) . . .

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2)

(3, 0) (3, 1)

(4, 0)

�
� � � �

� � �

� �

�

� � � �

Figure 1.7: Enumeration Scheme for {(m, n) : m, n = 0, 1, 2, . . .}. (See Exercise 1.13.)

(The call to generator(next int(Sum),0,I) will interfere with that of generator(succ,0,Sum) .) The
problem could be avoided though if generator/3 created temporary predicates with a different and unique
name every time it is invoked.

Define such an improved version of generator/3 .
Hint. It is suggested that the temporary predicates be named temp 0 , temp 1 , etc. You should use the

built-in predicate current predicate/2 (described in the SWI manual [33]) for finding out whether a proposed
new predicate name is available. Use concat atom/2 [9, p. 126] for constructing new predicate names. �

Admissible Representative Permutations

How many permutation types will have to be considered for the original 8 × 8 problem? This is easily found
out by a query,

?- bagof(P,generator(next partition,[(8,1)], P), Ps),

length(Ps,NTypes).

NTypes = 22

The number 22 is further reduced by concentrating on admissible permutations, i.e. on those without a 1–cycle;
the types of these we obtain by14

?- bagof(P, I^ A^ T^(generator(next partition,[(8,1)], P),

P = [(I, A)| T], I > 1), Ps).

Ps = [[(8, 1)], [(2, 1),(6, 1)], [(3, 1),(5, 1)], [(4, 2)],

[(2, 2),(4, 1)], [(2, 1),(3, 2)], [(2, 4)]]

We therefore have to consider here a mere 7 types. (Contrast this with the 14, 833 admissible permutations
considered earlier!) All we have to do now is to create for each admissible type a representative permutation.

Suppose we want to construct a representative permutation for the type [213351], a partition of 16. An
example permutation of this type in the cycle notation is obtained by simply grouping the elements of {1, . . . , 16}
according to the length of the cycles needed:

(1 2)(3 4 5)(6 7 8)(9 10 11)(12 13 14 15 16) (1.7)

14This query gives rise to ad partition(+N,?P) , a predicate for generating (and testing) admissible partitions of N :

ad partition(N,[(I,A)|T]) :- generator(next partition,[(N,1)],[(I,A)|T]),

I > 1.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

43

Enigma 1225: Rows are Columns

Using the two-line notation, we rewrite this as(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 5 3 7 8 6 10 11 9 13 14 15 16 12

)
(1.8)

which then in the Prolog implementation will be denoted by

[2,1,4,5,3,7,8,6,10,11,9,13,14,15,16,12] (1.9)

The Prolog implementation of (1.7)–(1.9) is in three steps:

(a) A predicate split(+N,+Type,-S) is used for partitioning [1, . . . , 16] into a list of sublists S according to
Type :15

?- split(16,[(2,1),(3,3),(5,1)],_S), write term(S,[]).

[[1,2], [3,4,5], [6,7,8], [9,10,11], [12,13,14,15,16]]

split/3 is defined below in terms of an auxiliary predicate split/4 which itself uses the accumulator
technique.

split(N,Type,S) :- from_to(1,N,L), split(L,Type,[],S).

Exercise 1.14. Define split/4 . (Some suggested hand computations are shown in Fig. 1.8, p. 45.) �

(b) maplist/3 is applied to rotate each sublist in the above list–of–lists.16

?- split(16,[(2,1),(3,3),(5,1)],_S), maplist(rotate, S,_R),

write term(R,[]).

[[2,1], [4,5,3], [7,8,6], [10,11,9], [13,14,15,16,12]]

(c) Finally, flatten/2 is used to obtain the list in (1.9).

(a)–(c) give rise to rep perm(+N,+Type,-Perm) , a predicate for finding a representative permutation of a given
type.

rep_perm(N,Type,Perm) :- split(N,Type,S),

maplist(rotate,S,R),

flatten(R,Perm).

1.5.4 Finishing Touches

Based on the ideas in Sect. 1.5.3, we are now in a position to define a new version of the predicate square/5 ,
defined in (P-1.1); the new definition is shown in (P-1.4). Now the queries from Sect. 1.4.10 may be completed
as before and with a much reduced computing time. For example, for a 14 × 14 board we find by a near
instantaneus response that the maximum total is 4900. (The earlier version won’t solve this problem due to
memory shortage and excessive computing time.)

15The first argument of split/3 is redundant as it can be computed from Type . Not having to recompute it, however, will save
computing time.

16Prolog implementations of list rotation are discussed in [5], [8] and [9].

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

44

Enigma 1225: Rows are Columns

Prolog Code P-1.4: Definition of square2/5

1 square2(Size,M,Total,Freq,Perm) :- var_matrix(Size,M),

2 ad_partition(Size,Type),

3 rep_perm(Size,Type,Perm),

4 list_permute(Perm,M,P),

5 transpose(P,M),

6 distinct(M),

7 eval_matrix(M,Freq),

8 total(Freq,Total).

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Applications of Prolog

45

Enigma 1225: Rows are Columns

split([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,1),(3,3),(5,1)], [], S) ��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,0),(3,3),(5,1)], [[1,2]], S) ��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(3,3),(5,1)], [[1,2]], S) ��

split([6,7,8,9,10,11,12,13,14,15,16], [(3,2),(5,1)], [[3,4,5], [1,2]], S) ��

split([9,10,11,12,13,14,15,16], [(3,1),(5,1)], [[6,7,8], [3,4,5], [1,2]], S) ��

split([12,13,14,15,16], [(3,0),(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

split([12,13,14,15,16], [(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

split([], [(5,0)], [[12,13,14,15,16], [9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

S = [[1,2], [3,4,5], [6,7,8], [9,10,11], [12,13,14,15,16]] �� success

Figure 1.8: Suggested Hand Computations for split/4

http://bookboon.com/

